

Taq DNA Polymerase

From Thermus aquaticus YT-1, recombinant (E.coli)

Deoxynucleoside-triphosphate: DNA deoxynucleotidyltransferase, Taq Pol, EC 2.7.7.7

Product code A5186

Description

Taq DNA Polymerase is a thermostable enzyme of approximately 94 kDa isolated from eubacterium Thermus aquaticus strain YT-1 (1). This unmodified enzyme replicates DNA at 72°C. The enzyme catalyzes the polymerization of nucleotides into duplex DNA in the $5'\rightarrow 3'$ direction in the presence of magnesium ions and possesses a $5'\rightarrow 3'$ exonuclease activity. The enzyme is highly purified and is free of nonspecific endo- or exonucleases. Taq DNA polymerase leaves single 3'-dA nucletide overhangs on their reaction products.

Concentration 5000 units/ml

Storage buffer 10 mM potassium phosphate, pH 7.4, 0.1 mM EDTA, 50 % glycerol, 0.1 %

Triton X[®]-100, 0.1 % Tween[®] 20.

Unit definition One unit of activity is the amount of enzyme required to incorporate

10 nmoles of dNTP into acid-insoluble DNA fraction in 30 minutes at 72°C.

Reaction buffer (x10) incomplete:

160 mM (NH₄)₂SO₄, 670 mM Tris · HCl pH 8.8, 0.1 % Tween[®] 20

Reaction buffer (x10) complete:

160 mM (NH₄)₂SO₄, 670 mM Tris · HCl pH 8.8, 0.1 % Tween[®] 20, 25 mM MgCl₂

Reaction buffer (x10) complete II KCl:

500 mM KCl, 100 mM Tris · HCl (pH 8.8), 0.1 % Tween[®] 20, 15 mM MgCl₂

+ 1 Tube MgCl₂ (100mM)

Recommended MgCl₂ concentration 1.5 mM - 6 mM

Storage conditions The recommended storage temperature is -20° C A test was performed showing that the enzyme is stable at room temperature for at least 3 days without any loss of activity.

Anwendung und Literatur

(1) Kaledin, A.S. et al. (1980) Biokhimiya 45, 644 (Rus).

Pipetting Scheme

Reagents	Volume	Final concentration
10x PCR reaction buffer	5 µl	1X
dNTP mix (40 mM)	1 µl	200 µM (of each dNTP)
Upstream Primer	variable	0.1-0.5 μM
Downstream Primer	variable	0.1-0.5 µM
Taq DNA Polymerase	0.25 - 1.0 μl	1.25 - 5.0 U
Template DNA	variable	10 - 500 ng / reaction
Sterile ddH₂0	ad 50 µl	
Final volume	50 μΙ	

Separate MgCl₂ solution can be used, if incomplete buffer is used, or if you have to titrate MgCl₂ for optimal PCR results.

Final MgCl ₂ conc. [mM]	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
Volume of 100 mM MgCl ₂ [µl]	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3

Thermocycler Protocol

Step	Temperature	Time	Cycle No.
Initial denaturation	94°C	2 min	1x
Denaturation Annealing Elongation	94°C 55°C 72°C	10 sec 20 sec 1 min	30X
Final elongation	72°C	10 min	1x

Notes

Program the cycler according to the manufacturer's instructions. Each program shall start with an initial denaturation step at 94°C for 2 to max. 5 min.

Recommended elongation time is 1 min per 1 kb of template

For maximum yield and specificity, temperature (annealing) and cycling times shall be optimized for each new template or pair of primers.