

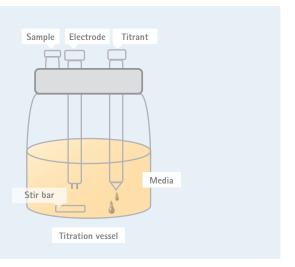
Pyridine-free Karl Fischer reagents

is the range of pyridine-free Karl Fischer reagents from PanReac AppliChem for an accurate water content determination using volumetric or coulometric systems.

Main advantages

- Safe: Low toxicity and pyridine free
- **Speed:** Fast titrations and saving of time
- **Reliable:** Stable endpoints ensure accurate and reliable results
- Long Shelf Life: Up to 5 years depending on the reagent

Volumetric determination


For samples with a water content greater than 0.1%. The amount of water is determined by volumetry, based on a redox reaction (lodine-lodide) sensitive to very low moisture levels.

$$I_2 + SO_2 + 2H_2O$$

Brown color

 $2HI + H_2SO_4$ Pale yellow color

In presence of a base and a solvent (i.e. imidazole and methanol)

The amount of iodine consumed in the titration is proportional to the water content of the sample. The end point is detected by a double platinum polarized electrode.

There are two ways to perform this reaction: with one component reagents or with two components

One component reagents

All the necessary reagents to perform the reaction (iodine, sulphur dioxide and imidazole) are present in the titrant reagent: **AQUAMETRIC Composite**

The media generally used with these reagents is dry methanol.

Main advantages

- Easy to use: All in one
- Flexibility to select the appropriate solvent (as media) to extract the water from the sample

Two component reagents

The reagents to perform the reaction are separate in two components:

AQUAMETRIC Titrant:

Contains iodine dissolved in methanol

AQUAMETRIC Solvent:

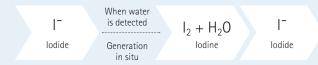
Medium that contains the rest of necessary compounds (imidazole and sulphur dioxide in methanol)

Main advantages

- High stability and shelf life
- Faster titration and high accuracy

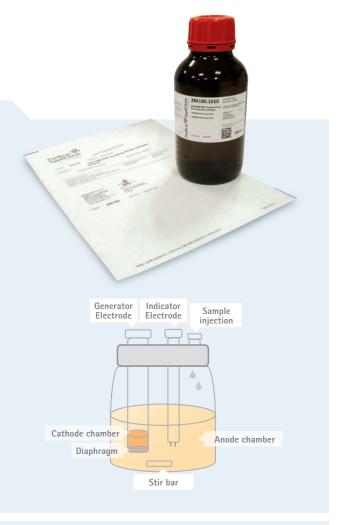
Pyridine-free Karl Fischer reagents

Volumetric determination


Choose the suitable reagents

Description	Media	Titrant	Code	Packaging
One component reagents				
Standard procedure				
AQUAMETRIC Composite 2		/	285813.1611	1000 mL
AQUAMETRIC Composite 5		/	285812.1610	500 mL
		/	285812.1611	1000 mL
		/	285812.1612	2.5 L
Methanol dry (max. 0.005% water), ACS, ISO	/		481091.1611	1000 mL
	~		481091.1612	2.5 L
Ketones and aldehydes				
AQUAMETRIC Composite 5K		/	285814.1611	1000 mL
AQUAMETRIC Working Medium			285821.1611	1000 mL
Industrial oil				
AQUAMETRIC Composite 2		/	285813.1611	1000 mL
AQUAMETRIC Composite 5		/	285812.1610	500 mL
		/	285812.1611	1000 mL
		/	285812.1612	2.5 L
AQUAMETRIC Solvent Oil B			286154.1611	1000 mL
Two component reagents				
Standard procedure				
AQUAMETRIC Titrant 2		/	285816.1611	1000 mL
AQUAMETRIC Titrant 5		/	285815.1611	1000 mL
		/	285815.1612	2.5 L
AQUAMETRIC Solvent	/		285817.1611	1000 mL
	✓		285817.1612	2.5 L
Food oils and fats				
AQUAMETRIC Titrant 2		/	285816.1611	1000 mL
AQUAMETRIC Titrant 5		/	285815.1611	1000 mL
		/	285815.1612	2.5 L
AQUAMETRIC Solvent CM	/		285819.1611	1000 mL
	_		285819.1612	2.5 L

Coulometric determination


For samples with a water content less than 0.1%. It needs two electrode's cell to work:

- Indicator electrode: Detects the moisture
- **Generator electrode:** Transmits a very low electric current causing the iodide oxidation into iodine. The iodine required for the reaction with the water in the sample is generated in situ (in the titration beaker) using a reagent solution containing iodide.

A measuring system of the current generated in the titration is used to determine coulometrically the amount of water.

There are two different types of coulometric cells: those with and those without a diaphragm.

Cells with diaphragm

The anode chamber is separated from the cathode chamber with a diaphragm. Oxidation of I^- to I_2 occurs at the anode and the reduction of protons to H_2 occurs at the cathode. **Two reagents are needed:**

- AQUAMETRIC Coulomat A or AG for the anode chamber
- AQUAMETRIC Coulomat CG for the cathode chamber

Main advantage

Highest accuracy

Cells without diaphragm

The anodic and cathodic compartments are not separated and only one reagent, the anolyte, is needed. **The reactions are performed in the same electrolyte:**

• AQUAMETRIC Coulomat AG

Main advantage

More convenient

AQUAMETRIC—Coulometric Titrations				1
Description	Anolyte	Catholite	Code	Packaging
Cells with diaphragm				
Standard procedure				
AQUAMETRIC Coulomat A	V		286181.1610	500 mL
AQUAMETRIC Coulomat AG	V		286180.1610	500 mL
AQUAMETRIC Coulomat CG		/	287192.2504	10x5 mL
Cells without diaphragm				
Standard procedure				
AQUAMETRIC Coulomat AG			286180.1610	500 mL

The AQUAMETRIC line is completed with...

Water Standards

They are used to calculate the titre of AQUAMETRIC Karl Fischer reagents for volumetric titration and to check the reliability of water determination using the coulometric method. They are NIST traceable.

Dry Solvents

For special applications other solvents are used (instead of or mixed with methanol). Here we show you the most common solvents, with very low water content, used in volumetric systems.

WATER STANDARDS				
Description	Volumetric	Coulometric	Code	Packaging
Water Standard 1.0 mg/g		/	395459.2522	10x10 mL
Water Standard 10 mg/g	~		395458.2522	10x10 mL
Sodium Tartrate 2-hydrate standard	~		241719.1608	100 g

DRY SOLVENTS				
Description	Code	Packaging		
Ethanol absolute dry (max. 0.02% water)	481086.1611	1000 mL		
Pyridine dry (max. 0.01% water), ACS	481457.1611	1000 mL		
Toluene dry (max. 0.005% water), ACS, ISO	481745.1611	1000 mL		
Chloroform dry (max. 0.005% water) stabilized with \sim 50 ppm of amylene, ACS	483101.1611	1000 mL		

IP-035EN

AppliChem GmbH Ottoweg 4 DE-64291 Darmstadt

Germany Phone +49 6151 9357 0 Fax +49 6151 9357 11

info.de@itwreagents.com

Nova Chimica Srl

Via G. Galilei, 47 I-20092 Cinisello Balsamo (Milano) Italy Phone +39 02 66045392 Fax +39 02 66045394 info.it@itwreagents.com PanReac Química SLU

C/ Garraf 2, Polígono Pla de la Bruguera E-08211 Castellar del Vallès (Barcelona) Spain Phone +34 937 489 400 Fax +34 937 489 401 info.es@itwreagents.com

